Skip to main content

Analysere NEET-status for unge individer

This example shows how to create a sample of 18-25 year olds who were NEET (not in education, employment or training) in 2022. Different definitions of NEET are used in research and statistics, so our approach cannot be considered official. When comparing with other NEET analyses, it is recommended to check which definitions are used. E.g. will some drop measures from the term or use a different definition of which measures are included. The definition of "not in work" can also vary. We have chosen to use people below a given minimum wage.

We import birth data to include 18-25 year olds, wage data to assess income (as a proxy for employment), and labor market measures data to distinguish between those in labor market measures and those not.

Course data for 2022 is also imported to see who took an education during this year. Personal identification numbers are linked to this data, so that it can be aggregated to person level and merged with the NEET dataset.

Finally, we generate the variable "neet" based on study participation = 0, labour market measure participation = 0 and salary income below a given limit (not in work).

 // Kobler til databank
require no.ssb.fdb:32 as db

//Oppretter datasett NEET
create-dataset NEET

//Inkluderer alle som var mellom 18 og 25 i 2022
import db/BEFOLKNING_FOEDSELS_AAR_MND as alder
replace alder = 2022 - int(alder/100)
keep if inrange(alder,18,25)

//Inkluderer lønn
import db/INNTEKT_WLONN 2022-12-31 as lønn

//Inkluderer tiltak for hele året
import db/ARBEIDSSOKER_TILTAK 2022-01-31 as tiltak1
import db/ARBEIDSSOKER_TILTAK 2022-02-28 as tiltak2
import db/ARBEIDSSOKER_TILTAK 2022-03-31 as tiltak3
import db/ARBEIDSSOKER_TILTAK 2022-04-30 as tiltak4
import db/ARBEIDSSOKER_TILTAK 2022-05-31 as tiltak5
import db/ARBEIDSSOKER_TILTAK 2022-06-30 as tiltak6
import db/ARBEIDSSOKER_TILTAK 2022-07-31 as tiltak7
import db/ARBEIDSSOKER_TILTAK 2022-08-31 as tiltak8
import db/ARBEIDSSOKER_TILTAK 2022-09-30 as tiltak9
import db/ARBEIDSSOKER_TILTAK 2022-10-31 as tiltak10
import db/ARBEIDSSOKER_TILTAK 2022-11-30 as tiltak11
import db/ARBEIDSSOKER_TILTAK 2022-12-31 as tiltak12

destring tiltak1 tiltak2 tiltak3 tiltak4 tiltak5 tiltak6 tiltak7 tiltak8 tiltak9 tiltak10 tiltak11 tiltak12

//Genererer en sammensatt tiltaksvariabel for 2022 (bruker NAV-kode for arbeidssøkere i tiltak)
generate tiltak = (tiltak1 == 1 | tiltak2 == 1 | tiltak3 == 1 | tiltak4 == 1 | tiltak5 == 1 | tiltak6 == 1 | tiltak7 == 1 | tiltak8 == 1 | tiltak9 == 1 | tiltak10 == 1 | tiltak11 == 1 | tiltak12 == 1)

//Importerer kursdata for 2022
create-dataset utdanning
import-event db/NUDB_KURS_NUS 2022-01-01 to 2022-12-31 as student

//Slår sammen fødselsnummer med utdanning
create-dataset lenke_utd_person
import db/NUDB_KURS_FNR as fnr
merge fnr into utdanning
use utdanning

//Aggregere de som har verdi over 0 i student etter fødselsnummer og til NEET-datasettet
destring student
keep if student > 0
collapse (count) student, by(fnr)
merge student into NEET

use NEET
//Setter missing på lønn til 0
replace lønn = 0 if sysmiss(lønn)

//Setter de som deltar i kurs til 1 og resten (inkludert missing) til 0.
replace student = 1 if student > 0
replace student = 0 if sysmiss(student)

//Generer variabelen neet som er 1 hvis student er 0 (ikke deltatt i kurs), lønn er mindre enn 37820.5 (antatt å være grensen for en minimum lønn) og tiltak = 0 (ikke i tiltak). Dette indikerer at personen er NEET.
generate neet = 1 if student == 0 & lønn < 37820.5 & tiltak == 0
replace neet = 0 if sysmiss(neet)

tabulate neet, cellpct
tabulate neet alder, colpct freq